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Abstract 

Winning a One Day International (ODI) cricket match depends on 
various factors related to scoring as well as the athletic strengths of the two 
teams.  While some of these factors have been well analyzed in the literature, 
others have yet to be investigated. In this analysis, statistical significance for a 
range of variables that could explain the outcome of an ODI cricket match is 
explored. In particular, home field advantage, winning the toss, game plan 
(batting first or fielding first), match type (day or day & night), and the effect of 
the Duckworth-Lewis method for matches shortened due to weather 
interruptions will be key interests in our investigation. The comparison of the 
accuracy of the Duckworth-Lewis method is done by receiver operating 
characteristics (ROC) curves.  For purposes of model-building, logistic 
regression is applied retrospectively to data already obtained from previously 
played matches. Some surprising results emerge.   
 

Introduction 
 

 Starting around the 13th century, cricket began to emerge as a very 
popular worldwide game. Moreover, cricket was one of the first sports to use 
statistics as a tool for illustration and comparison. Although dating back to 13th 
century, compared to sports like baseball, there has not been much statistical 
modeling work done for cricket. Wood (1945) used the geometric distribution to 
model the total score, while Kimber and Hansford (1993) proposed a 
nonparametric approach based on runs scored for assessing batting performance. 
Chedzoy (1997) addressed the issue of the effect of umpiring errors in cricket.  
 

The latest World Cup (March-April, 2007) enjoyed the participation of 
16 nations, all qualified from a larger pool of potential qualifiers.  The final 
participating nations included Australia, Sri Lanka, South Africa, New Zealand, 
West Indies, England, Pakistan, India, Zimbabwe, Bangladesh, Ireland, 
Bermuda, Scotland, Netherland, Canada, and Kenya. The most common and 
popular form of cricket is the One Day International (ODI), where over 50-overs 
(300 deliveries) per side are played. There are 11 players on a team, and the 
pitch is in the middle of an oval-shaped mound where most of the game action 
occurs.  Batsmen play in pairs, but bowlers are not allowed to throw the ball; 
instead, they must use a “stiff-arm” action to deliver a ball.  As is typical in 
games of sport, winning is the ultimate goal. Some studies, (De Silva, 2001), 
analyze the magnitude of the victory, but most consider the factors affecting 
winning. There are cases where the magnitude of the victory is important; and, 
in fact, large sums of money are routinely wagered when it comes to betting on 
the outcomes of ODI games (Bailey and Clarke, 2006).  
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Clarke (1988) used a dynamic programming model to calculate the 
expected score for games with rain interruptions, so that both teams have the 
same chance of winning the game. Popular article, Duckworth and Lewis 
(1998), introduced a technique for revising the target for games that are 
shortened due to weather interruptions. This method was well received by the 
cricket-playing community, and it has been using for more than 10 years. In fact, 
the final game between Australia and Sri Lanka in the 2007 World Cup 
competition used the Duckworth-Lewis (DL-Method) because the game was 
shortened to 38-overs each on account of rain interruption.  
 
 Factors such as winning the toss and the home team advantage 
affecting the results of ODI games have been studied in the literature (Clarke 
(2003) and De Silva (1997)).   In this paper, statistical significance for a range of 
variables that could explain the outcome of an ODI cricket match is explored. In 
particular, home field advantage, winning the toss, game plan (batting first or 
fielding first), match type (day or day & night), and the effect of the DL method 
for matches shortened due to rain are key interests in our investigation. Logistic 
regression is applied to historical data for purposes of model-fitting.  Our data 
consists of a set of the ODIs played between nations for the time period starting 
January 1995 to the end of the 2007 World Cup matches. Some of the matches 
were deleted from the analysis due to certain reasons such as abundance of bad 
weather or when the one team was much superior to the other (ranked teams 
playing non-ranked teams).  Tied games were also deleted from the analysis.  
Therefore, we only study games having a clear decision, and the data was 
collected from the web page source, www.cricket.org. Despite the availability of 
the data beginning in the 1970s, we considered games played beginning in 1995. 
Due to the continuous update of cricket rules, we chose, in particular, to use this 
most recent data and to collect a significant amount of information during the 
last 12 years.  
 

Exploratory Analysis of the Outcome of One Day International Cricket 
 

Because the outcome of a cricket game is dichotomous (ignoring a few 
games with ties), we use the logistic regression model. Define, 
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Further, let OPP be the class variable for the opponent teams, which is coded 
accordingly by the SAS logistic procedure. Letting )1( == ii YPp , the 
logistic regression model with main effects only is expressed as 

i5i4i3i21
i

i tβbβdβhβOPPβα
p1

p
ln +++++=  

For this part of the analysis, we carefully selected a set of matches played after 
1995.  The focus here concerns the two countries Sri Lanka and India. A total of 
249 = 123 (“Day”) + 126 (“Day & Night” ) matches are included for Sri Lanka, 
while a total of 288 = 162 (“Day”) + 126 (“Day & Night” ) matches are included 
for India. Because of the similarities in geography and of the nature of the 
players and other conditions such as weather, there are many reasons to believe 
that we can fit a common model for both of these counties.  
 

The PROC LOGISTIC (SAS 9.1) procedure was used to run the 
logistic analysis. Table I shows the output for the model with a second order 
interaction term between the variables “Coin toss, Bat first” and the “Day & 
Night”. One can include the variable OPP as also part of the interaction, but we 
omit its consideration for model simplicity.  Even though one might fit a higher 
order model, it is difficult to interpret the results of more complicated models.  
 

Table I 
Logistic regression model for Sri Lanka with Second Order Interaction 

terms between “Toss”, “Bat First” and “Day & Night”. 
 

Factor P-value 
Odds 
Ratio 

Lower 95% 
C.L. 

Upper 95% 
C.L. 

Intercept 0.5941 1.2519 0.5478 2.8612 

Opponent 0.24651    

Home Field <0.0001 4.8598 2.4335 9.7054 

Day & Night  0.0914 0.4392 0.8758 5.3856 

Bat First 0.9971 0.9982 0.3773 2.6410 

Toss 0.0271 0.3218 0.1178 0.8795 

Bat First * Toss 0.4632 1.5589 0.4762 5.1039 

Day & Night * Bat First 0.4318 1.6108 0.4908 5.2859 

Day & Night *Toss 0.0670 3.0630 0.9246 10.1468 
 
 1 This is a class variable, odds ratio is not reported. 
 

As seen in Table I, “Home Field” advantage is highly significant with 
odds almost four times higher when the game played in the home country.  This 
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result is consistent with De Silva (1997). The only interaction effect that is 
closer in significance is “Day & Night” verses “Coin Toss”. Note from Table I 
that “Bat First” or type of the game (“Day & Night” or “Day” only) does not 
show a significant effect on the outcome of the game under a logistic model with 
second order interaction.  
 
Table II shows the results for a logistic model with one interaction term, “Day & 
Night” verses “Toss”. In addition, the existence of a “Home Field” advantage is 
strongly suggested by this model. 
 

Table II 
Logistic regression model for Sri Lanka with a single second order 

interaction term between “Toss” and “Day & Night”. 
 

Factor P-value 
Odds 
Ratio 

Lower 95% 
C.L. 

Upper 95% 
C.L. 

Intercept 0.8781 0.9498 0.4921 1.8332 

Opponent 0.17781    

Home Field <0.0001 4.8754 2.4451 9.7213 

Day & Night  0.181 0.5817 0.2630 1.2866 

Bat First 0.1579 1.5351 0.8468 2.7828 

Toss 0.0309 0.4262 0.1964 0.9247 

Day & Night *Toss 0.0450 3.2891 1.0267 10.5364 
 

1 This is a class variable; odds ratio is not reported. 
 

Some potential reasons supporting “Home Field” advantage are effect 
of local fans, familiarity with the field, and expected weather conditions. Still, 
the interaction between factors “Day & Night” and “Toss” shows a significant 
effect on outcome of the game. So, “Toss” has a different influence for matches 
played in “Day” from those played during “Day & Night”. 
 

Tables III and IV show the winning percentages for “Day” and “Day & 
Night” matches. Of the 125 “Day” only matches played by Sri Lanka which we 
considered, that nation won 62.69% the games after having lost the coin toss, 
but this percentage decreases to 41.38% when the coin toss was won. In all of 
the proceeding tables, “W” is used for “win” and “L” is used for “loss”. On one 
hand, this phenomenon cannot be reasonably explained; on the other hand, it 
seems irrational to believe that this situation is exclusively due to randomness.  
With the winning of the toss, a team gets to play to its peculiar strategy 
strengths, while the opponent is forced defend against those particular strengths. 
This might explain lower success percentage when winning of the coin toss for 
“Day” only matches.  
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Table III 

Classification of the results of the 
coin toss for “Day Only” matches 

played by Sri Lanka (Winning 
percentages are given in 

parentheses). 
 

Table IV 
Classification of the results of the coin 
toss for “Day & Night” matches played 
by Sri Lanka (Winning percentages are 

given in parentheses). 
 

  Result  
 L W  
L 25 

(37.31) 
42 

(62.69) 
67 

W 34 
(58.62) 

24 
(41.38) 

58 

 
 
 

 59 66 125 
  

  Result  
 L W  
L 34 

(53.13) 
30 

(46.87) 
64 

W 27 
(43.55) 

35 
(56.45) 

62 

 
 
 

 61 65 126 

Of the 126 “Day & Night” matches played by Sri Lanka that we 
considered, that nation won 46.87% of the games after losing the coin toss, yet 
this percentage increases to 56.45% when winning the toss. Usually, “Day & 
Night” matches start around 2:00 PM local time and finish close to midnight. 
Field and weather conditions could change dramatically with playing time 
changes from day to night. Winning the toss helps a team to plan the game 
strategy according to the field and weather conditions, and this might be the 
reason behind the advantage of “Toss” for “Day & Night” matches. 
 

Table V 
Logistic regression model for India with the second order interaction terms 

between “Toss”, “Bat First” and “Day & Night”. 

Factor P-value 
Odds 
Ratio 

Lower 95% 
C.L. 

Upper 95% 
C.L. 

Intercept 0.4856 1.2875 0.6328 2.6196 

Home Field 0.0277 1.8338 1.0689 3.1462 

Opponent 0.24931    

Day & Night  0.0029 0.2584 0.1060 0.6299 

Bat First 0.1762 0.5454 0.2265 1.3131 

Toss 0.0667 0.4512 0.1928 1.0562 

Bat First * Toss 0.7749 1.1739 0.3914 3.5208 
Day & Night * Bat 
First 0.7430 1.2059 0.3938 3.6927 

Day & Night *Toss 0.0005 7.5587 2.4280 23.5311 
1 This is a class variable, odds ratio is not reported.  
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o
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Results shown in Tables V, VI, and VII are consistent with the conclusions 
drawn for Sri Lanka. 

Table VI 
Classification of the result for the 
coin toss for “Day Only” matches 

played by India (Winning 
percentages are given in 

parentheses). 
 

Table VII 
Classification of the result for the coin 
toss for “Day & Night” matches played 

by India (Winning percentages are 
given in parentheses) 

 

  Result  

 L W  

L 33 
(45.21) 

40 
(54.79) 

73 

W 55 
(61.80) 

34 
(38.20) 

89 

 
 
 

 88 74 162 
 

  Result  

 L W  

L 44 
(74.58) 

15 
(25.42) 

59 

W 32 
(47.76) 

35 
(52.24) 

67 

 
 
 

 76 50 126 

 
Effectiveness of the Duckworth-Lewis Method for Interrupted Matches 

 
 As mentioned earlier, for One Day International cricket matches each 
team gets only 50-overs (300 legal deliveries). If the weather (mainly rain) 
interrupts the game during play, at least one team does not get the intended 
number of overs.  In this situation, the game is shortened and a revised target 
score should be given to decide the winner. For example, if the innings of the 
team which bats second are interrupted by rain, a target score for the second 
team should be reduced to compensate for the lost overs due to rain interruption.  
 

Duckworth and Lewis (1998) introduced a way of revising targets for 
games which are shortened due to inclement weather. This method was well 
received by the cricket playing community and has been using for more than 10 
years. While there are other methods, such as the Average Run Rate, the Most 
Productive Overs, the Parabola Method, and the Clark Curves technique, the 
Duckworth Lewis (DL) method was able to overcome most of the shortcomings 
of these other procedures (See Duckworth Lewis, 1998 for a brief review of 
these methods).  The DL method is based on the idea that the batting team has 
two resources:  
(i) it has certain number of overs to face, and (ii) it has a limited number of 
wickets in hand. When w wickets have been lost, but u overs are still left, the 
revised relationship follows an exponential decay model given by 

0( , ) ( )[1 exp{ ( ) }]Z Z b= − −u w w w u , 

t
o
s
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where, 0 ( )Z w  is the asymptotic average total from the last 10−w  wickets in 

unlimited overs and )(wb  is the exponential decay constant. For more model 
details, refer to Duckworth and Lewis (1998).  While this technique is the best 
current method for the revised target, we investigate the effectiveness of the DL 
predictive win/loss percentages. 
 

Comparisons of the Accuracy of the Duckworth-Lewis Prediction 
 

A sample of 105 uninterrupted (fully played) recent ODI cricket 
matches was carefully selected.  To keep the effect of team superiority 
differences at a minimum, only Australia, England, South Africa, New Zealand, 
West Indies, Sri Lanka, India and Pakistan were included in the 105 matches.   
 

Even though the DL method can be applied in more complicated 
situations involving multiple interruptions, here we analyze only the one simple 
situation in which the first team finishes the game without any interruptions, but 
the second team has to stop batting before the end of 50-overs. For example, 
Table 8 shows data for interruption occurring at 30-overs, while Table 9 shows 
data for interruption occurring at 40-overs. Our question is, what would have 
been the outcome if we must apply the DL method at 30-overs and at 40-overs? 
When we mention winning, our focus is on the team who bats first and the game 
outcome, in terms of winning, for them. Tables 8 and 9 show the actual outcome 
as well as the DL predicted outcome for an imaginary interruption. The question 
is how accurate is the DL method.  Analyzing the data in Table 8 (interruption at 
30-overs), a highly significant relationship is found between the DL method and 
reality, having a Chi Square value less than 0.0001.  This is exactly the situation 
one expects. As seen in Table 8, when the DL method declares that the team 
who bats first loses the game due to an interruption at 30-overs, it is accurate 
only 56.90% of the time if we had let the game to continue until the end. 
Moreover, DL agrees with reality 80.85% of the time when the prediction is for 
the first batting team to win the game.   
 

Table IX shows that the DL method does a better job with the 
interruption at 40-overs, having a highly significant Chi Square value still less 
than 0.0001.  Here, prediction of a loss for the first team batting is 62.90% when 
compared to the actual outcome, but this percentage rises to 93.02% for the 
prediction of a win for the first team batting.  Apparently, the DL method does a 
very good job in predicting first batting team’s victory in this situation, but does 
a relatively poor job predicting the loss. This is consistent with one of the main 
criticisms that the DL method produces a decision in favor of the team suffering 
from the interruption. As comparison percentages of the prediction for the Run 
Rate method is given in Tables X and XI. Run rate is calculated as the ratio 
between the total score and the total number of overs. In the case that a team 
loses all 10 wickets before the 50 overs, we still have to use the 50 as the 
denominator of the ratio.  At 30-overs prediction for the loss of team 1 is 
accurate 62.86% of the time, while the prediction of the victory of team 1 is 
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correct up to 71.43%.  At 40-overs the two numbers are 64.71% and 71.83% 
respectively. Unlike in the DL-method, accuracy of the prediction of Run Rate 
method is not getting better with the number of overs that the team 2 has faced 
before the interruption.    
                   

Table VIII 
Comparison of the actual outcome 
with the DL method outcome at 30 

overs 
 

Table IX 
Comparison of the actual outcome 
with the DL method outcome at 40 

overs 

  Actual Outcome  

 L W  

L 33 
(56.90) 

25 
(43.10) 

58 

W 9 
(19.15) 

38 
(80.85) 

47 

 
 
 

 42 63 105 
 

  Actual Outcome  

 L W  

L 39 
(62.90) 

23 
(37.10) 

62 

W 3 
(6.98) 

40 
(93.02) 

43 

 
 
 

 42 63 105 
 

         

Cohen’s Kappa,  
c

c0

fN
ff

k =  is one of the commonly used statistics 

used to measure the agreement of two raters, where 0f is the number of 

concordant pairs for observed data and cf is the number of concordant pairs 
produced just by chance alone. N denotes the total number of observations. 
Here, it is found that at the 30-over interruption, 3657.0=k  while for 40-over 
interruption, 5220.0=k .  This means that for the 30-over interruption the DL 
method is in agreement with the actual result 36.57% of the time, while for the 
40-over interruption agreement increases to 52.20%.  
                 

Table X 
Comparison of the actual outcome 

with the Run Rate method outcome at 
30 overs 

Table X1 
Comparison of the actual outcome 

with the Run Rate method 
outcome at 40 overs 

   
Actual Outcome 

 

 L W  

L 22 
(62.86) 

13 
(37.14) 

35 

W 20 
(28.57) 

50 
(71.43) 

70 

 
 
 

 42 63 105 
 

   
Actual Outcome 

 

 L W  

L 22 
(64.71) 

12 
(35.29) 

34 

W 20 
(28.17) 

51 
(71.83) 

71 

 
 
 

 42 63 105 
 

DL 
Out- 
come 

DL 
Out- 
come 

DL 
Out- 
come 

DL 
Out- 
come 
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 For the Run Rate method, it is found that at the 30-over interruption, 
3265.0=k  while for 40-over interruption, 3443.0=k .  This means that for 

the 30-over interruption the Run Rate methods and the actual result are in 
agreement 32.65% of the time, while for the 40-over interruption agreement 
increases to 34.43%, which is not much of an improvement. 
 

Receiver operating characteristic (ROC) curves 
 

A Receiver Operating Characteristic (ROC) curve visually 
demonstrates the tradeoff between sensitivity and specificity as a function of 
varying a classification threshold. It is a common practice to use ROC curves to 
measure the accuracy of predictions by different methods. Although this method 
has been used primarily in medical and engineering fields, it could be used 
effectively in sports as well.  More precisely, an ROC plots the sensitivity versus 
(1- specificity), and the area under the curve gives a measure of the prediction. 
So, the ideal best prediction should have one square unit of area under the ROC, 
where it achieves both 100% sensitivity and 100% specificity (which, in reality, 
rarely happens). Consequently, when we compare two methods, the one with the 
greater area under its ROC is judged best. Table XII shows the ranking for DL 
method based on the magnitude of the victory predicted. This is based on the 
105 matches we considered earlier where we know the actual status. As in the 
previous section “win” means the victory of the team who bats first. Rankings 
were created in such a manner so as to represent the magnitude of the victory. 
For example if the difference between the DL revised target for team 2 and the 
actual score of team 2 (Revised DL target – Actual score of team 2) is less than -
10, a ranking of 1 was assigned, which is a strongly unfavorable situation for 
team 1.  The other ranks were similarly assigned.  Table XIII shows the 
sensitivity and specificity values for several different threshold values.  
 

Table XI1 
Ranked predictions by DL method at 40 overs 

 
  1 2 3 4 5 Total 

True Loss 27 10 2 2 1 42 

Status Win 11 11 1 4 36 63 

 Total 38 21 3 6 37 105 

 
The ranking shown above was done using the following scale: 
 
IF (Revised DL target – Actual score of team 2)  < -10 then Rank = 1 (strongly 
negative*) 
 IF -10  ≤ (Revised DL target – Actual score of team 2) < -2  then Rank = 2 
(negative) 
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 IF  -2  ≤  (Revised DL target – Actual score of team 2) ≤ 2  then Rank = 3 (not 
clear) 
 IF  2 < ( Revised DL target – Actual score of team 2) ≤ 10 then Rank = 4 
(positive) 
 IF  (Revised DL target – Actual score of team 2) > 10  then Rank = 5 (strongly 
positive) 
            * Positive means the victory of team 1 
 

Table XIII 
Sensitivity and Specificity for different thresholds for the DL method at 40 

overs. 
           ≥1            ≥2 

 W L 

+ 63 42 

-  0  0 

Total 63 42 
 

 W L 

+ 52 15 

- 11 27 

Total 63 42 
 

Sensitivity = 63/63 = 1 Sensitivity = 52/63 = 0.825 
Specificity = 0/42 = 0 Specificity = 27/42 = 0.642 

  
           ≥3            ≥4 

 W L 

+ 22  5 

- 41 37 

Total 63 42 
 

 W L 

+ 40  3 

- 23 39 

Total 63 42 
 

Sensitivity = 41/63 = .651 Sensitivity = 40/63 = .635 
Specificity = 37/42 = .881 Specificity = 39/42 = .929 

  
           ≥5            >5 

 W L 

+ 36  1 

- 27 41 

Total 63 42 
 

 W L 

+  0  0 

- 63 42 

Total 63 42 
 

Sensitivity = 36/63 = .571 Sensitivity = 0/63 = 0 
Specificity = 41/42 = .976 Specificity = 42/42 = 1 

  
Figure I shows the ROC curve for the DL method at the 40 over 

interruption.  A reference curve, which is for random guessing, (example: Toss a 
coin and decide the winner) is also shown. It is very clear that the DL prediction 
does an outstanding job when compared to random guessing. The area under the 
curve is considerably larger for the DL ROC.  Figure II shows the curves for the 
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interruptions at 30 and 40 overs.  Here, the area under the ROC curve for 40 
overs has the largest area.  This implies that when closer to the end of the game, 
the accuracy of DL method gets better. 
 

Figure I 
ROC curves for the DL method 

at 40 overs. 

 Figure II 
ROC curves for the interruptions at 
30 and 40 overs for the DL method. 
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ROC curves were developed for the Run Rate method using a similar ranking 
method:  
IF (Run Rate for team 1 - Run Rate for team 2)< -0.25 then Rank = 1 (strongly 
negative) 
 IF -0.25 ≤ (Run Rate for team 1 - Run Rate for team 2)< -0.05 then Rank = 2 
(negative) 
IF  -0.05 ≤ (Run Rate for team 1 - Run Rate for team 2) ≤ 0.05  then Rank = 3 
(not clear) 
 IF 0.05 < (Run Rate for team 1 - Run Rate for team 2) ≤ 0.25 then Rank = 4 
(strongly positive) 
 IF  (Run Rate for team 1 - Run Rate for team 2) > 0.25  then Rank = 5 (strongly 
positive) 
 Figures III and IV show comparisons between the Run Rate method and the 
DL method. Clearly, the DL method does a better job than the Run Rate 
method, and the difference is larger for the 40-over interruption. 
 

Figure III 
ROC curves for the 

interruptions at 30 overs. 

 Figure IV 
ROC curves for the interruptions at 

40 overs. 
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Conclusions 
 

In this article, we have statistically studied the importance of “home 
field” advantage on One Day International cricket.  In addition, the strange 
result of the disadvantage of winning the coin toss for day time matches has also 
been observed.  However, we have seen that winning the coin toss gives 
competitive advantage for “Day & Night” matches. 

 
The Duckworth Lewis method, which is the best current method for 

revising targets for interrupted cricket matches, seems to statistically render a 
favorable decision to the team most impacted by the interruption. It could be 
argued that this is not a fair comparison, as the DL method does not have 
available the same amount of information to decide the true winner. However, 
the comparisons given here clearly indicate that the DL method can and should 
be improved. 
 
† Ananda Bandulasiri, Ph.D., Sam Houston State University, Texas, USA  
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